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Abstract

Species assemblages can result from deterministic processes, such as niche differentiation

and interspecific interactions, and from stochastic processes, such as random colonisation

and extinction events. Although changes in animal communities following disturbances

have been widely examined, few studies have investigated the mechanisms structuring

communities during ecological succession. We assessed the impact of logging on small

mammal and beetle assemblages in landscapes dominated by old-growth boreal forests.

Our objectives were to 1) characterize variations in communities during the first 66 years of

post-harvest forest succession, 2) determine if there are non-random patterns of species

co-occurrence (i.e., deterministic processes), and if there are, 3) establish whether non-ran-

dom co-occurrences are best explained by habitat attributes or by interspecific interactions.

We captured small mammals and beetles along a gradient of forest succession (5–66

years) and in old-growth forest, and characterized key vegetation attributes. First, we tested

whether community compositions in clear-cut stands became similar to those in natural

stands after 66 years. We then used null models, which were either unconstrained or con-

strained by habitat attributes, to address the last two objectives and distinguish effects of

vegetation attributes from interspecific interactions on community assembly. We showed

that beetle assemblages differed in stands 21–30 years post-harvest compared to old-

growth forests. In contrast, harvesting did not influence the composition of small mammal

communities. Overall, our results suggest that community assembly during forest succes-

sion is driven by both stochastic and deterministic processes, the latter being linked to inter-

specific interactions more strongly than to vegetation attributes.
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Introduction

Natural and anthropogenic disturbances can alter animal species assemblages by modifying

biotic and abiotic habitat features for decades [1–4]. While temporal changes in animal popu-

lations and communities following disturbances such as fire [5,6] or timber harvesting [7,8]

have been widely described, few studies have identified how the processes structuring commu-

nities are affected [9]. With the increasing rate at which natural habitats are being modified,

there is a need to better understand how disturbances alter ecosystem properties and pro-

cesses, including community assembly.

Species assemblages can develop from deterministic processes, such as niche differentiation,

predation, competition, and differential responses of species to their environment [1,10,11],

from stochastic processes that are linked to colonization, extinction and speciation [12], or

from a combination of both [13,14]. The relative effects of deterministic and stochastic pro-

cesses in structuring assemblages may vary with habitat alteration [15], followed by ecological

succession [16]. For example, the competitive effects of the dominant ant species on the abun-

dance of other species increase with time since disturbance in Fennoscandian boreal forest

[17].

Deterministic and stochastic processes structuring community assembly can be revealed by

null-model analysis, which compares species co-occurrence that is observed with random

expectations of co-occurrence patterns [18–20]. If stochastic processes drive species assem-

blages, species co-occurrences should not differ from a random distribution. Conversely, if

deterministic processes structure communities, individual species should co-occur more or

less often than what would be expected randomly [9]. In typical null models, evidence for non-

random patterns does not directly identify the factors that are responsible, such as competition

or environmental suitability. Null models including habitat constraints can thus be used to

identify the processes underlying patterns of species distribution and to distinguish between

the effects of habitat and interspecific interactions [19].

Forests are among terrestrial habitats harbouring the greatest species richness [21]. Forest

ecosystems are being transformed at an increasing pace by human activities with consequences

on species assemblages that remain largely elusive. For example, while logging is among

human activities having the strongest impact on animal communities [22], most studies on

animal community assembly have focused solely on short-term effects of timber harvesting

[23,24]. As a result, time and processes that are responsible for community recovery during

post-logging forest succession remain unclear [25,26]. Such information is relevant to a broad

range of scientific fields, from community ecology to biodiversity conservation and forest

management. For example, given the conservation objective of maintaining biodiversity, the

time required for animal species to return to their pre-disturbance assemblages could be

among the criteria used to determine harvesting rotation length. If rotations were too short,

then animal assemblages would have insufficient time to return to their typical states; this can

result in subtle changes in animal communities, first characterized by the loss of barely mobile

species that are typically found in old-growth stages.

Studies linking habitat characteristics and animal species diversity typically have focused on

birds, which are influenced by landscape scale variables [27]. Yet, small mammals and insects

also play important roles in forest ecosystems, and they can be influenced by stand scale attri-

butes. Indeed, small mammals are prey for several mammalian and avian predators, and they

disseminate seeds and spores, decompose organic matter and litter, and consume a broad-

range of plant species [28,29]. Insects are the most diverse group of organisms, and they affect

various ecosystem processes, such as pollination and decomposition, through their high func-

tional diversity (as saproxylics, herbivores, predators, and fungivores, see, e.g., [30]).

Animal community assembly following disturbance
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Moreover, numerous studies have emphasised the sensitivity of both small mammals and

insects to forest management, with disturbed forests often supporting assemblages that differ

from those found in old-growth forests [28,29,31–33].

The purpose of this study was to identify the key processes shaping small mammal and bee-

tle communities during ecological succession after clear-cutting in old-growth boreal forest.

We focused upon these questions: 1) Had animal community composition of logged forests

recovered after 66 years (i.e., age of the oldest harvested stands sampled in our study) and is it

comparable to that found in old-growth forests? 2) Do communities assemble through deter-

ministic processes (i.e., to form non-random associations) during forest succession following

clear-cutting, and if they do, 3) are they influenced more strongly by habitat attributes or inter-

specific interactions? To answer these questions, we characterized species composition pat-

terns along a boreal forest succession, and assessed non-random patterns based on null model

analyses incorporating different habitat constraints.

Materials and methods

Study area

The study was conducted in the boreal forest of northeastern Québec, Canada (Fig 1). The cli-

mate of this region is humid and cold, with a mean annual precipitation of 1014 mm and an

annual mean temperature of 1.5˚C [34]. The fire cycle is long, exceeding 270 years, which

explains the large proportion of irregular old-growth stands in the region [35]. With long fire

cycle, fine-scale disturbances such as windthrows or insects and diseases that kill old trees

largely shape forest attributes, with stands often developing this irregular structure [36]. The

old growth forest within the region is composed of old-growth stands that are dominated by

black spruce (Picea mariana) and balsam fir (Abies balsamea), with scattered paper birch

(Betula papyrifera) and trembling aspen (Populus tremuloides) [34].

To evaluate how species assemblages vary during post-harvest forest succession, we selected

cut stands (5- to 66-years-old) from archives of forest product companies. Clear-cutting was

mainly used in the study area until 1996, at which point another logging practice (i.e. CPRS for

“Coupe avec Protection de la Régénération et des Sols”) was implement by only harvesting

trees with a diameter at breast height >9 cm while protecting soils and regeneration [37,38].

To minimise the risk that temporal changes in silvicultural practices influenced our conclu-

sions, we only selected post-CPRS stands if they had low tree retention (i.e. < 10% of the basal

area) so that they were comparable in structure to clear-cutting. We also selected uncut stands

that were representative of spruce–moss boreal forest (dominated by black spruce and balsam

fir), i.e. old-growth forest> 120-years-old because they are similar in terms of habitat charac-

teristics with irregular vertical and horizontal structures [39]. We surveyed only stands that

met the following criteria: i) had a minimum area of 6 ha (250 × 250 m); ii) streams and roads

were absent from the sites; iii) cover was dominated by conifers (black spruce and balsam fir);

and iv) only natural regeneration took place (no thinning or planting). Forest and logging

information came from the third decadal forest inventory program (Eco-forestry Information

System, Ministère des Ressources naturelles et de la Faune du Québec), together with informa-

tion from the forestry companies that were working in the area (i.e., Resolute Forest Products

and Arbec Forest Products Inc.), which were stored in a geographic information system that

was managed with ArcGIS 9.2 (ESRI, Redlands, CA, USA).

Small mammal sampling

We sampled 53 sites in 2007 (37 logged stands ranging from 5- to 62-years-old, and 16 old-

growth forests, Fig 1) and 34 sites in 2011 (17 logged stands ranging from 5- to 66-years-old
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and 17 old-growth forests) between June and September of each year. The logged sites were

spaced by at least 1 km to survey independent populations (i.e., logged sites were distant by

much more than the typical dispersal distances of small mammals [40], and to avoid spatial

autocorrelation issues (range of variograms < 1 km, see[2]. In 2007, small mammals were sam-

pled at each site using a grid of 7 × 7 live traps (7.7 × 8.8 × 23.0 cm; Sherman Traps, Tallahas-

see, FL), with a distance of 10 m between traps. The beginning of the grid was placed> 120 m

from stand edge. In 2011, we sampled small mammals using live traps placed every 10 m along

each of two parallel transects (100 m apart), running perpendicular from and centred on the

stand edge shared by the adjacent cut and uncut stands. Transects extended 150 m into each

stand (for a total of 300 m); thus, 30 traps were set up in each stand. For both sampling years, a

piece of apple was placed in each trap with peanut butter and some cotton wool. Traps were

left out for three consecutive days, and were inspected and reset every day at dawn. Each cap-

tured individual was identified and ear-tagged with a unique number (Style 1005–1, National

Band & Tag, Newport, KY). The experimental design differed between the two years because

the two studies had different specific objectives, but they were located in the same study area

(Fig 1). Combining the two datasets increased the number of replicates for each stand age,

Fig 1. Study area and the locations of sampling sites. Locations of sampling sites for small mammals (from both years 2007 and 2011) and beetles within the study

area, in the boreal forest of the Côte-Nord region, Québec, Canada.

https://doi.org/10.1371/journal.pone.0204445.g001
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while also encompassing a broader spatial domain. Ultimately, this approach provided a stron-

ger appraisal of community composition at each successional stage along the chronosequence.

All animal handling and experimentation were approved by the University Laval Animal Wel-

fare Committee, and the Ministère des Ressources naturelles et de la Faune du Québec has

issued research permit.

Beetle sampling

In each stand, beetles were sampled from 30 May to 21 August 2011 when most insects were

active in this boreal region [41], in 35 cut stands (4- to 66-years-old) and 10 old-growth forests

(34 sites were in common with small mammal sampling) located at least 1 km from each other

(Fig 1) to avoid potential spatial autocorrelation issues (see also [2]). We used two different

types of traps: flight-interception traps for flying beetles, and pitfall traps for ground-dwelling

beetles. We positioned the multi-directional flight-interception trap 0.5–1 m above the ground

at the centre of each site. The trap was constructed using four 15 × 40 cm panels (two made of

Plexiglas and two of mosquito netting) that were mounted in a cross pattern, along a 10-cm

diameter black cylinder, with two funnels located above and below the cylinder that led to col-

lecting vials [33]. Four pitfall traps were placed in a cross design seven metres from the centre

and 10 m from one another [2]. Traps were partly filled with 40% ethanol solution with traces

of household vinegar (5% acetic acid) to kill and preserve all insects. Traps were visited every 3

weeks and samples were preserved in 70% ethanol. Most specimens were identified at the spe-

cies (92.6%) or genus (6.9%) level, depending on the available taxonomic tools. Few specimens

(< 1%) were identified at the tribe or family level.

Vegetation sampling

In each stand, vegetation was characterized both in 2007 and 2011 at sampling points

located> 120 m from the forest edge. In 2007, vegetation was characterized at three different

sampling points (42 m from one another) within the capture grid of small mammals, whereas

in 2011 we used the location of the flight-interception trap as sampling point. In 2007, ground

cover (in percent) of dead wood and fallen branches, rocks, mosses, lichens, graminoids, herbs

and shrubs were visually estimated in three 1-m2 plots that were randomly located around

each sampling point. In 2011, percent cover was estimated in four 4-m2 plots located 2 m to

the North, South, East and West of the sampling point. The DBH of every living and dead tree

(� 9 cm) was recorded in either 200 or 400 m2 circular plots (depending upon tree density)

that were centered on each sampling point, and tallied in 2-cm DBH classes according to

species and status (dead/alive) for both years. The quantity of coarse woody debris (CWD;

length� 1 m and diameter at both ends� 9 cm) that was lying on the ground was also

recorded in the 200-m2 (or 400 m2) plots for 2007, and along two perpendicular 11.28 m

transects (i.e., the radius of a 400-m2 circle) that was centered on the circular plot for 2011.

We calculated several indices to test the influence of habitat heterogeneity on species assem-

blages. Structural heterogeneity in each stand was described with five indices: (1) the number

of diameter classes (2-cm classes) for standing trees, combining live and dead individuals; (2)

the amount of CWD; and (3) time-since-logging (stand age). We also estimated compositional

heterogeneity through (4) the number of tree and shrub species, and (5) the dominant tree spe-

cies in the stand. We chose these variables because they can influence small mammal and bee-

tle species distributions or community structures [1,2,29,42]. Indices 1, 2 and 4 were each

divided into 3 classes with about the same number of sites in each category, respectively repre-

senting low, medium and high values. Because the methodology for data collection differed

slightly between 2007 and 2011, CWD estimates were not readily comparable between 2007
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and 2011. In order to use a single variable summarizing CWD variation among sites, we trans-

formed the quantity of CWD into a binary variable, where the value was either higher (1) or

lower (0) than the median value in each year (which was different in 2007 and 2011). We

divided the stand age into five age-classes: 4–20, 21–30, 31–50, 51–70 and> 120 years since

logging, which provided enough sites in each category to allow interclass comparisons (small

mammals with 9 to 33 sites per class; beetles with 7 to 10 sites per class).

Age classes corresponded to establishment stage (4- to 20-years-old), aggradation stage

(early: 21- to 30-; mid: 31- to 50-; late: 51- to 70-years-old) and old-growth forest structural

stages (> 120 years-old), respectively, as described by successional stages in the North Ameri-

can boreal forest that were determined by [43]. The last index representing the dominant tree

species in the stand is composed of three mutually exclusive classes: stands that were domi-

nated by either spruce or fir species (species representing more than 60% of basal area); and

stands co-dominated by both spruce and fir species (species representing 40 to 60% of basal

area).

Statistical analyses

Species co-occurrence database. Species that occurred in<10% or >90% of the sites

were excluded from the analysis (e.g., red-backed voles, Myodes gapperi), because rare or ubiq-

uitous species provided limited information on habitat preferences and factors influencing

species co-occurrences [1,41]. We considered five small mammal species or groups: red squir-

rel (Tamiasciurus hudsonicus), eastern chipmunk (Tamias striatus), shrews (Sorex spp.), deer

mouse (Peromiscus maniculatus), and a “lemming and rock vole” category that included both

rock vole (Microtus chrotorrhinus) and southern bog lemming (Synaptomys cooperi). We com-

bined these two species, even if they were caught in less than 10% of the sites because they have

similar food preferences (e.g., herbivorous and fungivorous) and habitat (e.g., young forest

and humid areas; [44] and they exceeded the 10% threshold when combined into a single class.

Analyses of species composition patterns. We examined how species assemblages

changed among four age classes characterising post-harvest succession (4 to 20, 21 to 30, 31 to

50, and 51 to 70-years-old) and compared these assemblages with those found in old-growth

forest, which is the successional stage of reference in our study. For small mammals, data from

2007 and 2011 were combined to provide a more general assessment of changes in species

assemblages during post-harvest succession. We examined the compositional differences (β
diversity) among forest age classes using a Permutational Multivariate Analysis of Variance

(PERMANOVA) and Permutational Analysis of Multivariate Dispersions (PERMDISP) based

on a semi-metric distance matrix calculated from Sørensen Dissimilarity indices in R (R

Development Core Team 2011, version 2.15.0). We used respectively the adonis and betadisper
functions, from the vegan package, to test differences in species composition estimated with

the Sørensen Dissimilarity index for small mammals, ground beetles and flying beetles among

forest age classes. PERMANOVA (based on 999 permutations of the data) tested for differ-

ences in assemblages between treatments (i.e., forest age classes). For small mammals, data

permutations were done individually for each year (2007 or 2011) to avoid mixing data col-

lected with different sampling protocols. When PERMANOVA detected significant differences

among age classes, we carried out pairwise contrasts between each post-harvest age class and

our successional stage of reference, old-growth forest. P-values were adjusted for multiple

comparisons using Holm’s sequential Bonferroni procedure. A significant result in PERMA-

NOVA may indicate assemblage differences across treatments, differences in within-treatment

dispersion (i.e., heterogeneity of multivariate dispersion within groups), or both [45]. To prop-

erly interpret the PERMANOVA results, we used PERMDISP when PERMANOVA was
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significant, which tests for homogeneity in multivariate dispersion between age classes. When

PERMDISP detected significant differences between age classes, we used Tukey HSD to con-

trast all age classes with old-growth forest. To visualise the compositional differences between

age classes and compositional dispersion of treatments from the community centroids, we

used principal coordinates ordination plots (also known as Classical multidimensional scaling,

MDS) based upon the species composition dissimilarity matrix. We used an 80% confidence

ellipse, as it enclosed most sites within their respective groups, and provided adequate graphi-

cal representation of their positions relative to other groups. Stands in which no small mam-

mals were captured were removed from the analyses (PERMANOVA: N = 12). We verified the

absence of autocorrelation in our small mammal data from 2011 due to the paired experimen-

tal design with a Mantel test (mantel function from the vegan package) between the species

composition dissimilarity matrix and the Euclidian distance matrix among sites (r = 0.047,

p = 0.237).

We also determined how the abundance of the ubiquitous red-backed vole varied during

post-harvest succession using linear mixed models that were performed with the package nlme
(R Development Core Team 2011). We took into account differences in experimental design

between years by including site nested within year as random intercepts. Red-backed vole

abundance and time-since-logging were log-transformed to normalise the variables prior to

analysis.

Null model analysis of species co-occurrence patterns. We used null model analysis to

test whether observed species pairwise co-occurrence patterns were more strongly influenced

by deterministic or stochastic processes (if not significantly different from those obtained by

randomising species distributions). We followed the procedure of Peres-Neto et al. [19] and

Azeria et al. [1], and used two sets of null models. The first one considers only the occurrence

of species in the distribution matrix (i.e., unconstrained null models) to quantify whether

observed pairwise co-occurrence patterns differed from random expectations. The second null

model also considers the potential influence of species’ habitat preferences (i.e., habitat-con-

strained null models). The sign and significance of associations between pairs of species

detected under unconstrained versus habitat-constrained null models were then used to evalu-

ate the potential role of habitat and interspecific interactions on species co-occurrence.

For unconstrained null models, we used two types of models, i.e., fixed-fixed (FF) and

fixed-equiprobable (FE). Both FF and FE models maintain the same overall species occurrence

frequencies as those contained in the observed data. While FF also maintains species incidence

and the total number of species at each site, FE considers sites to be colonised equiprobably

(i.e., sites are equally suitable). FF null models tend to detect relatively more negative associa-

tions, whereas FE null models tend to detect more positive co-occurrences [1]. Therefore, we

used FF and FE null models to identify segregated and aggregated pairs of species, respectively.

Both types of null models provided relatively low risk for type I and II errors [18]. If the num-

ber of segregated and aggregated pairs of species was higher in the observed distribution

matrix than in the unconstrained null models, it would indicate that species communities

were most strongly driven by non-random processes.

The habitat-constrained null models were also based upon FE and FF null models, but

incorporated habitat constraints, i.e., habitat affinities of species estimated from our dataset (in

accordance with [1,19]), which in our analyses were the discrete categories of our five hetero-

geneity indices. These models were constructed by assigning each site to a habitat class, and

randomisations were performed separately within each subset of sites. As a result, the habitat-

constrained null models maintained the species frequency within each habitat type and con-

trolled either for species incidence (HCFE models), or for both species incidence and site spe-

cies richness (HCFF models).

Animal community assembly following disturbance

PLOS ONE | https://doi.org/10.1371/journal.pone.0204445 September 20, 2018 7 / 18

https://doi.org/10.1371/journal.pone.0204445


To differentiate between the role of habitat and interspecific interactions in species co-

occurrences, we followed the approach of Peres-Neto et al. [19], which compares the sign and

significance of the associations that are detected under unconstrained versus habitat-con-

strained null models (i.e., FF vs HCFF, and FE vs HCFE). For example, if unconstrained mod-

els detected a significant species pairwise association but constrained models detected a non-

significant one, the co-occurrence could be attributed to similarities (if positive) or differences

(if negative) in habitat preferences. Alternatively, if an association was significant in both

unconstrained and constrained models, the response could likely be attributed to interspecific

interactions. Similarly, an association can also be attributed to interspecific interactions if it

was significant in constrained models but non-significant in unconstrained models. Further

details regarding the interpretation of the outcomes are outlined in Appendix 1 of [1], and in

[19].

We generated 1000 random matrices for each null model with the vegan package in R and

used the Sørensen Dissimilarity index to evaluate the strength of species pair co-occurrences

(for more details see S1 Appendix). We determined whether each pairwise association was an

aggregation or segregation by counting the number of null matrices in which association value

was lower than, higher than, or identical to those that were obtained from the observed co-

occurrence data. Associations were considered statistically significant if the observed Sørensen

index lay outside of the 95% distribution of the index values that had been obtained from the

1000 simulated null matrices.

Results

Variation in small mammal and beetle communities during forest

succession

We captured 1449 individuals belonging to 12 species of small mammals across the 53 sites in

2007 and 384 individuals from 12 species across the 34 sites in 2011. PERMANOVA indicated

that post-harvest succession had no significant effect on small mammal assemblages (N = 75,

F4,70 = 1.19, P = 0.316; Fig 2A). The abundance of red-backed voles, however, increased during

post-logging forest succession (time-since-logging: regression coefficient ± SE = 0.66 ± 0.08,

P< 0.001, N = 87).

We collected 3894 ground-dwelling beetles belonging to 199 different species (or morphos-

pecies, i.e. “taxa readily separable by morphological differences that are obvious to individuals
without extensive taxonomic training”, [46]) and 2411 flying beetles to 240 species (or mor-

phospecies). PERMANOVA revealed that species assemblages of both ground-dwelling and

flying beetles (based on 58 and 48 species, respectively) varied during post-harvest succession

(ground-dwelling beetles: N = 45, F4,40 = 2.35, P = 0.001, Fig 2B; flying beetles: N = 45, F4,40 =

1.76, P = 0.003, Fig 2C). Pairwise comparisons following PERMANOVA indicated that

ground-dwelling and flying beetle assemblages differed in stands 21–30 years post-harvest

from those found in old-growth forests (P = 0.004), but no differences were detected between

species assemblages in old-growth forests and those of mature stands or recent cuts (P> 0.05).

PERMDISP indicated that differences in dispersion among the different stand age classes were

marginally significant for ground-dwelling beetles (P = 0.055; Fig 2B) and significant for flying

beetles (P = 0.015; Fig 2C). However, this significant difference in the data dispersions for fly-

ing beetles was due to differences between two stand age classes (Fig 2C: C2 vs C4; Tukey

HSD, P = 0.011), but not between old-growth forests and other stands. Consequently, differ-

ences revealed by PERMANOVA were attributed mainly to differences in species assemblages

across age classes (e.g., centroid differences among stands).
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Random and non-random patterns of species co-occurrence. Overall, species co-occur-

rences could be explained by deterministic processes for at most half of the species pairs (50%,

44% and 46% for small mammals, ground-dwelling and flying beetles, respectively). Among

the 10 possible pairs of co-occurrences of small mammal species, a single (10%) negative asso-

ciation (between “lemming and rock vole” and shrews) was detected with the FF uncon-

strained null models, whereas four (40%) positive associations were detected with the FE

unconstrained null models (Fig 3A). We considered a total of 58 ground-dwelling and 48 fly-

ing beetle species (i.e., species occurring in at least 5 of the 45 sites). We thus investigated pair-

wise species co-occurrences for 1653 and 1128 possible pairs of ground-dwelling and flying

beetles, respectively. FF unconstrained null models showed that 21% of ground-dwelling beetle

pairs and 18% of flying beetle pairs had a significant negative association, whereas FE models

showed that 23% ground-dwelling beetle pairs and 27% flying beetle pairs were significantly

aggregated (Fig 3C and 3E).

Contribution of habitat attributes and interspecific interactions to non-random pat-

terns. Non-random co-occurrence patterns could be partly explained by habitat characteris-

tics (20%, 34% and 41% for small mammals, ground-dwelling and flying beetles, respectively).

Using habitat-constrained models, we found that the number of tree and shrub species in the

stand explained the only significant segregation that had been previously detected with FF in

small mammals. Furthermore, HCFF models that were constrained by coarse woody debris

detected a significant segregation between red squirrels and shrews (i.e., negative association

within the habitat they shared). Habitat heterogeneity indices (HCFE models) could not

explain the four aggregations detected under FE models (i.e., indicating 100% of aggregations

are beyond species habitat affinities alone and due to interspecific interactions; Fig 3B).

Results were similar between ground-dwelling and flying species of beetle. For simplicity,

we present the results for flying species in parentheses immediately after those for ground-

dwelling species. Overall, 83% (71%) of the segregated pairs of beetles that were detected by

unconstrained FF models remained significant after accounting for habitat effects using HCFF

models (Fig 3D and 3F), indicating that these species pairs are driven mainly by antagonistic

interactions. Thus, habitat attributes alone explained only 17% (29%) of the segregations that

were detected by unconstrained FF models (area enclosed between arrows; Fig 3D and 3F).

Time-since-logging alone could explain 5% (13%) of the segregated patterns (S1 and S2 Figs).

HCFF models also detected 102 (92) additional segregated pairs among the possible pairs that

were non-significant under the unconstrained (FF) null model (dotted bars in Fig 3D and 3F),

indicating that these species were segregated within their shared habitat. Time-since-logging

alone explained 42% (32%) of these additional segregations (Fig 3D and 3F). HCFE models

also showed that 51% (51%) pairwise aggregations of FE models remained significant when

constrained by habitat (Fig 3D and 3F), indicating aggregations beyond expectations of habitat

effects alone. Over 49% (49%) of species pairs were explained by habitat alone (area enclosed

between arrows; Fig 3D and 3F), but 13% (12%) were explained by the dominant tree species

in a stand, whereas time-since-logging mediated 8% (9%) of these (S1 and S2 Figs). Further-

more, HCFE models detected 208 (131) additional significant aggregated pairs (dotted bars in

Fig 2. Ordination plots represent dissimilarity in assemblage patterns. Ordination plots of the principal coordinates

analyses (based on dissimilarity matrices calculated from Sorensen indices) representing dissimilarity in assemblage

patterns among boreal forest age classes for a) small mammals, b) ground-dwelling beetles, and c) flying beetles. The

ellipses enclose 80% of the variability in compositional differences accounted for by the first two axes. We used solid

lines for old-growth forest, and dashed lines for cut stands of different age after clear-cutting. Age classes: C-1, C-2, C-

3, and C-4: 4–20, 21–30, 31–50, and 51–70-years-old clear-cut stands, respectively, OF is for old-growth forest of at

least 120-years-old. The solid symbols represent the centroids of the ellipses for each class (C1: circle, C2: triangle, C3:

star, C4: square, C5: diamond).

https://doi.org/10.1371/journal.pone.0204445.g002
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Fig 3D and 3F). These new aggregation patterns were then masked by the differences in affin-

ity for the specific habitat that was considered. Time-since-logging explained 47% (39%) of

these new associations, and the number of tree/shrub species in a stand explained 13% (21%).

Discussion

We showed that tree harvesting influenced the composition of small mammal and beetle com-

munities, with changes becoming detectable 21 to 30 years following disturbance. Overall, our

analysis suggests that species co-occur through deterministic processes for about half of the

species pairs (50%, 44% and 46% for small mammals, ground-dwelling and flying beetles,

respectively), and that deterministic processes were more likely associated with interspecific

interactions than with habitat attributes. Our study suggests that the response to clear-cutting

varies greatly among taxonomic groups, with some assemblages being more susceptible to dis-

ruption (i.e., beetles) from harvesting than others (i.e., small mammals).

Our analysis indicated that small mammal communities remained similar (at least in terms

of species occurrence) during forest succession, thereby suggesting that this assemblage was

less susceptible to forest disturbance. Consistent with previous studies [29,47], we found that

logging reduced the abundance of red-backed voles, which then gradually increased during

Fig 3. Significantly aggregated or segregated co-occurrence patterns under unconstrained or constrained null models. Percentage of significantly aggregated (grey

bars) and segregated (black bars) pairwise species co-occurrences among small mammals (a and b), ground-dwelling beetles (c and d) and flying beetles (e and f) under

different unconstrained (a, c, and e, respectively) and habitat-constrained (b, d, and f, respectively) null models (two algorithms: fixed–equiprobable: HCFE and fixed–

fixed: HCFF). The significant outcomes under unconstrained FE and FF models are included as background to the constrained models to visualize changes in the

significant aggregated and segregated percentage of co-occurrences with the corresponding constrained HCFE and HCFF null models. The significant species co-

occurrences from the unconstrained null model that became non-significant under habitat constraint are enclosed between two arrows (indicating pair associations,

primarily due to habitat effect). The dotted bars indicate new significant associations under habitat-constrained null models (indicating that the species pairs were

segregated within their shared habitat [HCFF] or the newly aggregations were patterns cancelled by the concurrent or opposite effects of habitat heterogeneity indices

[HCFE]). HC null models were constrained by either TSL: time-since-logging, or NS: number of different species in the stand, or NDC: number of tree diameter classes

in the stand, or DS: dominant tree species in the stand, or CWD: coarse woody debris.

https://doi.org/10.1371/journal.pone.0204445.g003

Animal community assembly following disturbance

PLOS ONE | https://doi.org/10.1371/journal.pone.0204445 September 20, 2018 11 / 18

https://doi.org/10.1371/journal.pone.0204445.g003
https://doi.org/10.1371/journal.pone.0204445


forest succession. Even if community composition did not vary over time, our results showed

that harvesting did affect small mammal communities. Likewise, changes in the relative abun-

dance of other mammal species (deer mice, snowshoe hares Lepus americanus) have been

recorded during forest succession [29,48]. In contrast to small mammal assemblages, we

observed differences in beetle assemblages between 21- to 30-year-old post-harvest stands and

old-growth stands. Most old-growth forest beetle species also occurred in recently harvested

sites, a pattern that was consistent with observations on carabid and staphylinid beetles in the

boreal forest [49,50]. Old-growth species may survive for a certain period of time after harvest-

ing, before drastically decreasing [31]. This response could explain why beetle communities in

stands that were 21–30 years post-harvest differed more strongly from those in old-growth for-

ests than assemblages in 5- to 20-year-old post-harvest stands. Similar to our results with small

mammals, previous work demonstrated that young stands generally harboured a lower abun-

dance of epigaeic beetles compared to mid-successional stands and mature forests in boreal

ecosystems [51].

Our compositional analyses were performed using the most common species because the

low number of records of species rarely caught (called rare species in our study) would give us

little information on the process structuring the assemblages. The impact of clear-cutting may

even be greater than what our analysis revealed, since our approach prevented us from assess-

ing the effect of harvesting on specific rare species, which could be more sensitive to habitat

changes than more abundant and conspicuous species [52,53]. Even if conservation generally

focuses on species at risk of extinction, our study still has value for conservation since some

studies have also underscored the ecological importance of preserving the species most typical

of particular ecosystems [38,54]. Moreover, species that are not currently at risk of extinction

could become so if current harvesting practices were intensified or changed in a way that

affected their dynamics.

Both stochastic and deterministic processes seemed to drive changes in community struc-

ture. More specifically, the co-occurrence of about half of the species pairs could be linked to

simple random patterns (50%, 56% and 54% for small mammals, ground-dwelling and flying

beetles, respectively), which is consistent with the concept that colonization, dispersion and

extinction is driven largely by stochastic processes. Accordingly, a study on plant community

assembly showed that the relative importance of stochastic and deterministic processes

changed during post-fire succession, with stochastic processes driving in early succession and

niche-driven dynamics becoming important in later successional stages [55]. Our study dem-

onstrated the importance of stochastic processes such as colonization and dispersal in structur-

ing animal communities. The structure and species composition of vegetation at logged sites

(e.g. legacies such as snags and woody debris), together with the landscape setting (e.g. proxim-

ity to sources of colonists from old-growth forests) thus can play a significant role in preserv-

ing regional biodiversity. The influence of landscape features can be particularly relevant for

the preservation of beetle species because structural and compositional habitat heterogeneity

effects may extend at least 400 m for flying beetles [2]. Furthermore, mature forests offer a

pool of species that could colonize the adjacent harvested stands, thereby influencing beetle

communities [56]. Adjacent stands may also enable species to persist in harvested stands by

promoting the colonisation through the proximity of source populations or essential habitat

elements [57]. Preserving patches of mature forest can increase the chance that small mammal

and beetle communities may persist during early successional stages [58–60].

Our results also revealed non-random co-occurrence patterns that could be partly related

to habitat characteristics (20%, 34% and 41% for small mammals, ground-dwelling and flying

beetles, respectively). Tree and shrub diversity explained the only significant segregations that

were detected in small mammals, but none of the four aggregations that were observed among
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pairs of species. For beetles, the role of habitat characteristics was usually higher for aggrega-

tion (49% for both ground-dwelling and flying beetles) than for segregation patterns (17% and

29% for ground-dwelling and flying beetles, respectively). This finding suggested that numer-

ous beetle species have similar habitat affinities, which are mainly related to the state of forest

succession and to the tree species dominating in the local stand. Nevertheless, the relationship

that species aggregation and segregation share with time-since-logging could reflect the fact

that species in young stands have pioneering characteristics favouring generalist species, while

species found in old stands could be specialists of old-growth ecosystems [61]. Furthermore,

aggregations that are associated with the stand’s dominant tree species can be explained by the

fact that multiple beetle species prefer the same tree species, such as black spruce or balsam fir

[1,62]. For example, a study that was conducted in this area showed that of 47 saproxylic beetle

species collected in snags, 21% of the species were found exclusively in black spruce snags and

36% exclusively in balsam fir [62].

Species–habitat relationships can be strong drivers of animal community structure after

disturbance. For example, aggregations and segregations of saproxylic beetle species in post-

fire stands are better explained by species–habitat relationships than by interspecific interac-

tions [1]. In post-harvest boreal forest, however, we found that interspecific interactions play

an even greater role than habitat attributes in driving non-random co-occurrence patterns.

This discrepancy between studies might reflect differences in the effects of harvesting and fire

on forest ecosystems, including animal communities. Indeed, it is well known that clear-cut-

ting does not fully mimic post-fire forest dynamics, so distinct species assemblages should be

expected [63]. Moreover, wildfires have a more rapid and drastic effect on plants and animals

than does logging. Severe fires cause high mortality of macroarthropods with relatively low dis-

persal abilities [64,65]. Post-fire species communities are thus largely composed of individuals

arriving from adjacent stands, either through random dispersal or attracted by specific habitat

attributes, such as smoke, heat and infrareds, resulting from a fire event [66,67]. This leads to a

community mainly structured by random processes and species-habitat relationships, which

are characterized by more specialised species [1,68]. However, the similarity in communities

that we observed between recent cuts and old-growth forest stands suggests that species assem-

blages in young harvested stands would be composed largely of residual populations of mature

forest species remaining after harvesting. The presence of residual communities for which

resources could be greatly limited after logging, may explain why interspecific interactions

play a central role in structuring post-harvest communities. Furthermore, because residual

animal populations tend to be much larger in logged than in burned stands [64], random pro-

cesses structuring communities should play a smaller role in post-logging than in post-fire

habitats. Accordingly, about 50% of the co-occurring pairs of species that we observed could

be explained by random associations, whereas 70% post-fire saproxylic beetle communities

could be linked to random patterns [1].

We found that interspecific interactions could also be strong driver of animal community

structure after disturbance, as it explained more than half of non-random species associations

(i.e., significant aggregations and segregations). Habitat disturbance, such as logging, can

change resource availability (e.g., the intermediate disturbance hypothesis; [69,70] and, in

turn, alter the relative roles and outcomes of interspecific interactions in structuring species

assemblages (e.g., [17]. In other words, logging may have altered resource availability in such a

way that interspecific interactions had a stronger effect in structuring communities than spe-

cies-habitat relationships in our study. Our results are also congruent with another study

showing a trade-off between competitive ability and the capacity to use abundant resources at

various stages of forest succession [71]. Moreover, a recent study illustrates that trophic groups

of beetles (i.e. predators and decomposers/primary consumers) may have different patterns of
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recovery during the course of post-logging forest succession [72]. Overall, our analysis reveals

variation in response patterns and recovery processes across taxa. The multi-taxa approach

allowed us to identify variations in the response of animal communities (i.e., taxa with high or

low susceptibility to disturbance), thereby providing a more comprehensive assessment of

post-disturbance ecosystem recovery. Notably, we showed that post-logging community

assembly was largely driven by species interactions and random dispersal, highlighting the

important role of the surrounding landscape to ensure a source of colonizers for cut stands.
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Methodology: Hélène Le Borgne, Christian Hébert, Angélique Dupuch, Daniel Fortin.
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